Exact Embedding Functors for Module Categories and Submodule Lattice Quasivarieties
نویسندگان
چکیده
منابع مشابه
On n-excisive functors of module categories
We give a new construction for the n-th Taylor polynomial, in the sense of Goodwillie calculus, for homotopy functors from spectra to spectra. We then use this model to classify n-excisive functors of module categories of functors with smash product (FSPs) by bi-modules of explicit FSPs. Introduction: In [Cal3], T. Goodwillie constructs a Taylor tower for functors from spectra to spectra. The l...
متن کاملA Generalization of Watts’s Theorem: Right Exact Functors on Module Categories
Watts’s Theorem says that a right exact functor F : ModR → ModS that commutes with direct sums is isomorphic to − ⊗R B where B is the R-S-bimodule FR. The main result in this paper is the following: if A is a cocomplete category and F : ModR→ A is a right exact functor commuting with direct sums, then F is isomorphic to − ⊗R F where F is a suitable R-module in A, i.e., a pair (F , ρ) consisting...
متن کاملFunctors for Alternative Categories
An attempt to define the concept of a functor covering both cases (covariant and contravariant) resulted in a structure consisting of two fields: the object map and the morphism map, the first one mapping the Cartesian squares of the set of objects rather than the set of objects. We start with an auxiliary notion of bifunction, i.e. a function mapping the Cartesian square of a set A into the Ca...
متن کاملOn functors between module categories for associative algebras and for N-graded vertex algebras
We prove that the weak associativity for modules for vertex algebras are equivalent to a residue formula for iterates of vertex operators, obtained using the weak associativity and the lower truncation property of vertex operators, together with a known formula expressing products of components of vertex operators as linear combinations of iterates of components of vertex operators. By requirin...
متن کاملOpposite Categories and Contravariant Functors
The opposite category of a category, contravariant functors and duality functors are defined. Next we state the proposition (1) the objects of C, the morphisms of C, the cod-map of C, the dom-map of C, (the composition of C),the id-map of C is a category. Let us consider C. The functor C op yielding a strict category is defined by the condition (Def. 1). (Def. 1) C op = the objects of C, the mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1999
ISSN: 0021-8693
DOI: 10.1006/jabr.1999.7865